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SUMMARY

Progress was made this year in several major areas. These include eddy current

computations, modelling and analysis, design optimization methods, wind tunnel Magnetic

Suspension and Balance Systems (MSBS), payload pointing and vibration isolation systems,

and system identification. In addition, another successful International Symposium was

completed, with the Proceedings edited and published. A 4th Symposium has been planned and

preparations are well in hand.

These activities continued and concluded several years of work under this Grant and

extended previous work on magnetic suspension systems and devices in the Guidance and

Control Branch. Research accomplishments facilitated the demonstration of several new

developments in the field of magnetic suspension technology.

This report concentrates on the period 11/1/95 thru 10/31/96, previous periods having

already been the subject of progress reports. A summary of all Grant activity is provided at the

conclusion of this report.

REVIEW OF WORK DURING THE SUBJECT PERIOD

(i) Eddy current modelling. The ELEKTRA computer code has been used to calculate

forces, stored energy, field magnitude and phase, and power losses for magnetic suspension

(LAMSTF-Iike) and magnetic bearing (ASPS-like) configurations. Various problems have

been encountered and overcome, such that an analysis capability suitable for application to the

LGMSS project has steadily emerged. The current status of this work is reflected in some of

the publications listed later in this report.

(ii) Design optimization. An effort to apply state-of-the-art optimization methods and

computer codes to the magnetic suspension problem has begun. Initial analysis has



concentrated on small-gap, axisymmetric bearings. It has been shown that optimum designs

based on maximum force, minimum power, etc., are identifiable and are distinctly different from

each other. This effort will result in a publication at some point in the future. Analysis will

then proceed to the large-gap problem, which is more challeging, although some work has

already been accomplished (by David Cox, LaRC). This work will definately extend beyond

the conclusion of this Grant.

(iii) Wind Tunnel Magnetic Suspension and Balance Systems. There appears to be

continuing interest in this application, both in general, and for a specific test objective, namely

ultra-high Reynold's number testing. Work on recommissionig the ex-MIT, ex-NASA, 6-inch

MSBS at ODU continues, but at a very slow pace due to lack of funding and documentation.

Alternate funding sources for future work are being explored. Two recent presentations

concerning the wind tunnel application have been made and copies are attached as Appendices

to this report.

(iv) Annular Suspension and Pointing System. Work continues at a low level,

following successful levitation in five degrees-of-freedom The control soitware has been

"cleaned up" and some electrical upgrades made to reduce noise. A second joint Proposal for

future work with LaRC and Boeing has been submitted and would result, if successful, in a

dramatic increase in effort in this area.

(v) Symposium support. Support was provided for the organization and execution of

the 3rd International Symposium on Magnetic Suspension Technology in Tallahassee, Florida.

This meeting was a great success with no significant problems encountered. A 4th Symposium

has been planned for late 1997, in Gifu City, Japan. The P.I. will continue to provide support

for this meeting beyond the end of the current Grant.

(vi) System Identification. This Section is submitted by the Co-Investigator.



FINAL REPORT

IDENTIFICATION AND CONTROL OF MAGNETIC SUSPENSION

SYSTEMS

SUMMARY

For identifying a dynamic system, operating under a stochastic environment, projection

filters, which were originally derived for deterministic systems, are developed by using

optimal estimation theory. This newly developed system identification algorithm is

successfully implemented at NASA Langley Research Center for identification of unstable

large-gap magnetic suspension systems. The results show that it can be applied for

dynamic systems under closed-loop operation with known or unknown feedback

dynamics. The test data processed can be either in time domain or frequency domain. It is

also very effective to be used for controller design for nonlifiear unstable systems and for

direct Kalman filter gain estimation without knowing noise covariances.

This report summarizes the indirect closed-loop time-domain system identification

algorithm and an iterative LQG controller redesign cycles developed for magnetic

suspension systems. In each cycle, the closed-loop identification method is used to

identify an open-loop model and a steady-state Kalman filter gain from closed-loop

input/output test data obtained by using a feedback LQG controller designed from the

previous cycle. Then the identified open-loop model is used to redesign the state feedback.

The state feedback and the identified Kalman filter gain are used to form an updated LQG

controller for the next cycle. This iterative process continues until the updated controller

converges. The proposed indirect closed-loop system identification and controller design is

demonstrated by numerical simulations and experimental results.

I Introduction



ClassicalLinear QuadraticGaussian(LQG) controllersaredesignedby solving two

separate,but dual problems:the LinearQuadraticRegulator(LQR) designandKalman

filter (i.e., optimalstateestimator)design.Theperformanceof thecontrollersreliesonan

accurateopen-loopmodel for theLQR andanaccurateestimateof the measurementand

processnoisestatisticsfor theKalmanfilter. It is difficult to obtain anaccuratemodel

throughanalysisfor somesystems,andanaccurateestimateof thenoisestatisticsthrough

testingfor mostsystems.Furthermore,thenoisestatisticsmayberelatedto thecontroller

if part of the measurementandprocessnoisearegeneratedby the sensorand actuator

amplifiers, respectively. To overcometheseproblems,we presentan iterative LQG

controllerdesignapproachfor a linearstochasticsystemwith anuncertainopen-loopmodel

andunknown noisestatistics. This approachconsistsof closed-loopidentification and

controller redesigncycles. The closed-loopidentification methodcan simultaneously

identify theopen-loopmodelandtheKalmanfilter gainundertheclosed-loopoperation

with a known dynamiccontroller. Then the identified open-loopmodel is usedfor the

LQR design.TheLQR andtheidentifiedKalmanfilter gainareusedto form theupdated

LQG controller for the nextclosed-loopidentification. The processcontinuesuntil the

updatedLQGcontrollerconverges.

For systemidentification, severalmethods(Chertet al., 1992a,1992b,1993;Phanet

al., 1991;Juanget al., 1993)havebeenintroducedrecently to identify the state-space

modelof a linearsystemandtheKalmanfilter. Typically thesystemis underopen-loop

excitationwith anuncorrelatedwhitenoiseinput. For anunstablesystem,the input/output

dataarenot availablewhile it is underan open-loopoperation. To directly use these

methods,wehaveto designacontrollerandaninput signalfor theclosed-loopsystemso

thatthe input signal to theopen-loopsystemis almostwhite. Unfortunately,this is very

difficult. On the other hand,someidentification methods(Phanet al., 1992;Liu and

Skelton, 1990)havebeenproposedrecentlyfor identifying a systemunderclosed-loop
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operation.However,theyhaveseveralshortcomings.First, theKalmanfilter gaincannot

besimultaneouslyidentified becausethey areappliedonly for deterministic systems. In

Phan et al. (1992), no recursive form was derived for computing the open-loop system

Markov parameters, and in Liu and Skelton (1990), the approach is based on system pulse

response. In this report, a recursive form for computing the open-loop system and Kalman

filter Markov parameters is derived for stochastic systems with random excitation.

For a system under closed-loop operation, a novel approach for identifying the open-

loop model and Kalman filter gain is presented. First, we derive the relation between

closed-loop state-space and AutoRegressive with eXogeneous (ARX) models for stochastic

systems. From the derivation, it can be seen that a state-space model can be represented by

an ARX model if the order of the ARX model is chosen large enough. Since the relation

between the input/output data and the system parameters of an ARX model is linear, a

linear programming approach like least-square methods, can be used for the ARX model

parameter estimation. Second, we derive the algorithm to compute the open-loop system

and Kalman filter Markov parameters from the estimated ARX model parameters. In this

step, we first compute the closed-loop system and Kalman filter Markov parameters from

the estimated ARX model parameters. Then the open-loop system and Kalman filter

Markov parameters are computed from the closed-loop system and Kalman filter Markov

parameters and the known controller Markov parameters. Third, the state-space model for

the open-loop system is realized from the open-loop Markov parameters through the

singular value decomposition method (Chert et al., 1984; Juang and Pappa, 1985).

Finally, the Kalman filter for the open-loop system can be estimated from the realized state-

space model and the open-loop Kalman filter Markov parameters through a least-square

approach.

With this closed-loop identification, an iterative LQG controller design can be

performed. Since the Kalman filter used in this LQG controller is obtained directly from

the closed-loop identification, it automatically takes into account the effect of the controller



on the noisestatistics. The LQR tendsto rejectthe processnoiseandthe Kalman filter

tendsto filter out the measurementnoise. Therefore,theclosed-loopidentification can

improve the LQG designand anupdatedLQG controller can enhancethe closed-loop

identificationin thenextcycle. Afteracertainnumberof iterations,theLQG controllerwill

converge.

A similar approachis presentedby Liu and Skelton (1990). As comparedto that

approach,this researchhasthe following contributions. First, the proposedmethodis

developedunderthe stochastic framework rather than adeterministic one. Second, the

Kalman filter gain is also identified so that it can be used for state estimation directly.

Third, random excitation rather than pulse response is used for the closed-loop

identification. Finally, since the Kalman filter gain is identified, LQR state feedback is

used rather than output feedback. Numerical and experimental results are provided to

illustrate and validate this controller design.

2 Closed-Loop State-Space and ARX Models Relationship

Since the relation between the input/output data and the model parameters of a state-

space model is nonlinear, parameter estimation of a state-space model from input/output

data is a nonlinear programming problem. Nonlinear programming is difficult to solve in

general and involves complex iterative numerical methods. The convergence and

uniqueness of the solution are also not guaranteed. Unlike a state-space model, the ARX

model has a linear relationship between its model parameters and input/output data.

Therefore, linear programming can be used for identifying the ARX model. After

obtaining the ARX model, a state-space model can be developed based on the relation

between these two models. In this section, the relation between a closed-loop state-space

model and an ARX model is derived by using z-transforms.

A finite-dimensional, linear, discrete-time, time-invariant system can be modeled as:

xk+_ : Ax k + Bu k + wk (1)
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Yk =Cxk +vk" (2)

where x e R "_ , U E ..Rsxl, y e R "×_ are state, input and output vectors, respectively; wk is

the process noise, vk the measurement noise; [A, B, C] are the state-space parameters.

Sequences w_ and vk are assumed gaussian, white, zero-mean, and stationary with

covariance matrices W and V, respectively. One can derive a steady-state filter innovation

model (Haykin, 1991):

Yck+1 = A2,k + Bu k + AKe k (3)

Yk = Cxk + ek • (4)

where ._ is the a priori estimated state, K is the steady-state Kalman filter gain and e k is

the residual after filtering. The existence of K is guaranteed if the system is detectable and

(A,W 1/2) is stabilizable (Goodwin and Sin, 1984). The advantage of using the filter

innovation model in the closed-loop identification is that one can directly identify the

Kalman filter gain without estimating the covariance matrices of both process and

measurement noise which usually are difficult to be obtained from test data (Chen and

Huang, 1994).

Similarly, any kind of dynamic output feedback controller can be modeled as:

Pk+l = AaPk +BjYk (5)

u k =Cjp k +Djy k +r k, (6)

where A a, B,_, Cj, and D e are the system matrices of the dynamic output feedback

controller, Pk the controller state and r k is the open-loop input to the closed-loop system.

Combining (3) to (6), the augmented closed-loop system dynamics becomes

Oh+, = A,.rlk + B,.rk + A_K,.ek

Yk = CcOh+ ek ,

(7)

(8)

where
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I Eo]A c= BdC Ad.J B = , A K, L Bj J'

and r/k = . It is noted that K,. can be considered as the Kalman filter gain for the
Pk

closed-loop system and the existence of the steady-state K is guaranteed when the closed-

loop system matrix A. is nonsingular. Substituting (8) into (7) yields

rl_+_ = A rl_ + B,.rk + A,.K.y_, (10)

where A = A,.

state Kalman filter gain K. exists. The z-transform of (10) and (8) yields

- A.K_C,. and is guaranteed to be asymptotically stable because the steady-

rl(z) = (z - -A)-_(A,.KcY(Z) + Bcr( z))

y(z) = C,.rl(z) + e(z).

(11)

(12)

Substituting (11) into (12), one has

y(z) C,.(z --1= -A) (A,.Kcy(z)+Br(z))+e(z).

The inverse z-transform of(l 3) with (z- A)-_ = _ Ai-_z-i yields
i=1

yk=_.,C, Xi-'A_K_y, i+_,C,.Ai-'B,,rk_i+ek.
i=1 i=l

(13)

(14)

m --,

Since A is asymptotically stable, A' = 0 if i > q for a sufficient large number q. Thus

(14) becomes

where

q q

Yk = _..aiY,-i + .Y_.bir,-, + ek (15)
i=1 i=l

--i-I Ba, = C,.-A'-'A:K,., b_ = C,.A ,.. (16)

The model described by (15) is the ARX model which directly represents the

relationship between the input and output of the closed-loop system. The coefficient
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matricesa i and b, can be estimated through least-square methods from random excitation

input r k and the corresponding output Yk- From (15) by neglecting e k, the least-square

problem becomes _r = [a I bj L a =q bq]CDr or _ 00, where

_ T r T ,_ T r T _.a yT

= - q+l q+l - q q - 2

M M M M 0 M

yr rtr_2 T, r Jy r_, rr_, .,-2 Yt-u rT-q

=[Yq+l Yq+2 L yt] r, 0=[a t b I a 2 b 2 L aq bq] r, and l is the number of

data points. The integer l has to be large enough so that the • matrix has more rows than

columns. The batch least-square solution is

0 = (oro)-lcDr_ ( 17 )

Therefore, solving for an ARX model simply involves solving a linear programming

problem involving an over determined set of equations.

3 Markov Parameters and State-Space Realization

In the previous section, an ARX model, which represents a closed-loop system, is

identified from the input/output data through the least-square method. With the known

controller dynamics, the estimated ARX model can be transformed to an open-loop state-

space model by the following steps. First, the closed-loop system and Kalman filter

Markov parameters are calculated from the estimated coefficient matrices of the ARX

model. Second, the open-loop system and Kalman filter Markov parameters are derived

from the closed-loop system Markov parameters, the closed-loop Kalman filter Markov

parameters, and the known controller Markov parameters. Third, the open-loop state-space

model is realized by using singular-value decomposition for a Hankel matrix formed by the

open-loop system Markov parameters. Finally, an open-loop Kalman filter gain is

calculated from the realized state-space model and the open-loop Kalman filter Markov
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parametersthroughleast-squares.

Thez-transformof theopen-loopstate-spacemodel(3)yields

.?c(z)= (z - A) -_(Bu(z) + AKe(z)). (18)

Substituting (18) to the z-transform of the output equation (4), one has

y(z) = C( z - A) -I (Bu( z) + AKe( z)) + e(z)

= £ Y(k)z-_u(z) + £ N(k)z-ke(z),
k=l k=0

(19)

where Y(k) = CAk-_B are the open-loop system Markov parameters; N(k) = CAk-_AK, for

k = l,r. ,_, open-loop Kalman filter Markov parameters, and N(0)= I which is an

identity matrix. Similarly, for the dynamic output feedback controller (5) and (6) and the

closed-loop state-space model (7) and (8), one can derive

u(z) £= Ya(k)z y(z)+ r(z)
k=0

y(z) = £ Y,.(k)z-kr(z)+ £ N(k)z-'e(z),
k=l k=0

(20)

(21)

t" A k-_B for k = 1,L are the controller Markovwhere Yd(O) = D d, and Yd(k) = _,l d d' ,oo,

A k-IBparameters; Y,(k) = C, _ , the closed-loop system Markov parameters; and N(0) = I,

N,.(k) = ('v._,.ak-_A,,Kc, for k = I,L ,oo, the closed-loop Kalman filter Markov parameters.

Closed-Loop System and Kalman Filter Markov Parameters. The z-

transform of the ARX model (15) yields

-i -i rI- a_z y(z)= b,z (z)+e(z). (22)
i=1

Applying long division to (22), one has

y( z ) = (blz -I + ( b2 + atbl )z -2 + (b 3 -t- a t (b 2 + alb t ) + a2b I)z-3+... )r( z ) +



(I + a_z -_ + (a_a_ + a 2)z -2 + (a_ (ala t + a 2) + a2a j + a3)z -3+...)e(z).

After comparing with (21), the closed-loop system and Kalman filter Markov parameters

can be recursively calculated from the estimated coefficient matrices of the ARX model,

k

Y,.(k) = b_ + ZaiY,.(k i) (23)
i=l

k

N,.(k) = Za, Nc(k - i). (24)
i=1

It is noted that Y,.(0) = 0, N,(0) = I, and a_ = b i = 0, when i > q. One may obtain (23)

and (24) from (16) and the definition of the Markov parameters (Phan et al., 1991; Juang et

al., 1993). However, the derivation is much more complex.

Open-Loop System and Kalman Filter Markov Parameters. Next, the open-

loop system and Kalman filter Markov parameters can be derived from the closed-loop

system Markov parameters, the closed-loop Kalman filter Markov parameters, and the

known controller Markov parameters. Substituting (20) into (19) yields

y(z)=(_.=Y(k)z-k)(_=oYa(k)z y(z))+-k _Y(k)z-kr(z)+_N(k)z-kE(z)k=,k=0

= _akz-'y(z)+ _ Y(k)z-'r(z)+_ N(k)z-'E(z), (25)
k=l k=l k=0

k

where a k = _ Y(i)Ya(k - i). Rearranging (25), one has
i=1

( l-_kz-kly(z)=_Y(k)z-kr(z)+_N(k)z-ke(z)'k=,j k=. k=0
(26)

Similarly, one can apply long division to (26), and then compare it with (21), to describe

the closed-loop system Markov parameters recursively in terms of the open-loop system

and the controller Markov parameters,
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i j k

Y,. (j) = Y(j) + _ ak Y, ( j - k) = Y(j) + _ _ Y(i)Yd(k - i)Y,.(j - k ).
k=l k=l i=l

(27)

And the closed-loop Kalman filter Markov parameters can be recursively expressed in

terms of the open-loop system Markov parameters, the open-loop Kalman filter Markov

parameters, and the controller Markov parameters as following:

i j k

N,.(j)=N(j)+_a,N (j-k)=N(j)+_._Y(i)Ya(k-i)N,.(j-k). (28)
k=l k=l i=1

Rearranging (27) and (28), one has

j k

Y(j) = Y (j)- _ __ Y(i)Yj(k - i)Yc( j - k) (29)
k=l i=1

j k

N(j) = N,.(j) - _-_Z Y(i)Ya(k - i)Nc(J - k). (30)
k=l i=1

Equations (29) and (30) show that one can recursively calculate the open-loop system and

Kalman filter Markov parameters from the closed-loop system Markov parameters in (23),

the closed-loop Kaiman filter Markov parameters in (24), and the known controller Markov

parameters Y,l(k) = CjA,I_-IB, I. It is noted that Y,(O) = 0 and N(0) = I. One can easily

verify (29) and (30) from (9), and also from the definition of the Markov parameters.

State-Space Realization. The open-loop state-space model can be realized from

the open-loop system Markov parameters through the Singular Value Decomposition

(SVD) method (Chen, 1984; Juang and Pappa, 1985). The first step is to form a Hankel

matrix from the open-loop system Markov parameters,

H(j) = Y(j + 1) Y(j + 2) L Y(j + 1)
N M 0

Y(J + 7) Y(J + 7 +1) L Y(j + y + fl)J

(31)

where Y(j) is the j-th Markov parameter. For a noise free system, if the arbitrary integers
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fl > n, and 7 > n (the order of the system), the Hankel matrix H(j) is of rank n. From

the measurement Hankel matrix, the realization uses the SVD of H(1), H(1) = UZV T, to

identify a n-th order discrete state-space model as

Z = Z_/2UrH(2)VnZ_ _'2, B= Et./ZVr.E,., C= E_U_ZI,/2 (32)

where matrix Z, is the upper left hand n xn partition of Z containing the n largest

singular values along the diagonal. Matrices U, and V, are obtained from U and V by

retaining only the n columns of singular vectors associated with the n singular values.

Matrix E,,, is a matrix of appropriate dimension having m columns, all zero except that the

top m x m partition is an identity matrix. E_ is defined similarly.

Open-Loop Kalman Filter Gain. Once the open-loop A and C are obtained, one

can easily calculate the open-loop Kalman filter gain from the open-loop Kalman filter

Markov parameters N(k) = CAkK in a least-square sense as follows

K=(OTO)-IoT/ : /' whereO= . (33)

LN(k)j

The integer k has to be large enough so that the matrix O has more rows than columns.

The identified Kalman filter gain can be used directly for state estimation.

4 Iterative LQG Controller Design

Classical LQG controllers are designed by solving two separate, but dual problems: the

LQR design and Kalman filter design. Here, the Kalman filter gain can be simultaneously

obtained with the open-loop state-space model through the closed-loop identification. Only

the LQR design based on the identified open-loop model needs to be solved. The

performance index for the LQR problem is defined as

T _ T T

+u k Ru k (34)P. I.= E y_ Qy_ r+uk Ruk = E xk C QCx k r
k=l k=l
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whereweightingmatricesQ and R are design parameters. We can summarize the iterative

LQG controller design as follows:

1. Use the a priori open-loop model and arbitrary covariance matrices of the measurement

and process noise to design the LQR and Kalman filter. Then, calculate the controller

Markov parameters. The weighting matrices Q and R for the LQR chosen here will

remain the same in the following iterations.

2. Apply random excitation input to the closed-loop system and record the closed-loop

input/output data.

3. Estimate the coefficient matrices of the closed-loop ARX model by using (17).

4. Calculate the closed-loop system and Kalman filter Markov parameters by using (23)

and (24).

5. Calculate the open-loop system and Kalman filter Markov parameters by using (29)

and (30).

6. Realize the open-loop state-space system matrices [A, /}, E'] by using (31) and

(32).

7. Estimate the open-loop Kalman filter gain /( by using (33).

8. Obtain the LQR feedback gain F by solving the corresponding Riccati equation based

on the identified open-loop model.

9. Form the updated LQG controller in (5) and (6) by using Aj =,4-/YF-A/(6',

^ ^

Bj = AK, Ca =-F, and Dj=0.

10. Calculate the updated controller Markov parameters and check the convergence of the

controller by
n

Z ...... (35)
k=O

If _ is greater than a desired value, go back to step 2, otherwise stop.
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5 Numerical and Experimental Example

The proposed iterative LQG controller design has been applied to control design of the

Large-Angle Magnetic Suspension Test Facility (LAMSTF) (Groom and Britcher, 1992;

Groom and Schaffner, 1990) developed in NASA Langley Research Center (see Fig. 1).

The LAMSTF is a laboratory-scale research project to demonstrate the magnetic suspension

of objects over wide ranges of attitudes. This system represents a scaled model of a

planned Large-Gap Magnetic Suspension System. The LAMSTF system consists of a

planar array of five copper electromagnets which actively suspend a small cylinder with a

permanent magnet core. The cylinder is a rigid body and has six independent degrees of

freedom, namely, three displacements (x, y and z) and rotations (pitch, yaw and roll).

Currents in the electromagnets generate a magnetic field which produces a net force and

torque on the suspended cylinder. The roll of the cylinder is uncontrollable, and is

assumed to be motionless. Five pairs of the LEDs and light receivers are used to indirectly

sense the pitch and yaw angles, and three displacements of the cylinder's centroid.

Therefore, the control inputs to the system consist of five currents sent into five

electromagnets and the system outputs are five voltage signals measured from five photo

detectors. The forces on the cylinder are, in general, non-linear functions of space and

current. Therefore, only the linear time-invariant perturbed motion about an equilibrium

state is considered. Because it is difficult to accurately model the magnetic field and its

gradients, the analytical model contains some modeling errors. Therefore, the performance

of the LQG controller based on the analytical model alone is unsatisfactory.

The system matrices of the analytical model are shown in the appendix. The

eigenvalues of the system matrix indicate that the LAMSTF system includes highly unstable

real poles (about 10 Hz) and low-frequency oscillatory modes (about 0.16 Hz). For both

numerical simulation and experiment, the sampling rate is 250 Hz. The performance index

used for the LQR design is also shown in the appendix. The step command for all

simulations and experiments is 0.02 radian for pitch and yaw, and 0.2 mm for x, y, and z.
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In the numericalsimulation,the analyticalmodel is usedasthe true model. In each

iteration,theratiosof theprocessandmeasurementnoiseto thecorrespondingsignalare

2% and 1%,respectively. To simulatemodelingerrorandunknownnoisestatistics,the

initial LQG controllerisdesignedby usinganalteredmodelof whicheachparameteris 5%

greaterthanthecorrespondingparameterof the analyticalmodelandguessedcovariance

matricesof noiseW = 101_0×t0 and V =/._×5. The simulated step response with this initial

controller for the pitch, yaw, x, y, and z is shown in Fig. 2. It is clear that the result is

very poor. After performing the first iteration of the proposed iterative LQG controller

design, the step response shown in Fig. 3 is greatly improved. The performance is further

improved slightly in the following iterations. Figure 4 shows how the controller converges

by comparing the (1,1) element of the controller Markov parameters.

For a noise free system, the exact open-loop model can be obtained after the first

closed-loop identification and no further iteration is required. In this case, the identified

Kalman filter gain becomes the dead-beat observer gain (Phan et al., 1991; Juang et al.,

1993). For a noise corrupted system, iterations are required to update the open-loop model

and the Kalman filter gain until the iterative LQG controller converges. Although the

numerical simulations show that the iterative controller can converge quickly, the required

conditions to guarantee the convergence need further study.

In the experiments, the analytical model and guessed covariance matrices of noise

W = 10l_0×t 0 and V = 15×5 are used to design the initial LQG controller. The experimental

step response with this initial controller is also very poor. The experimental step responses

for the first three iterations are compared in Fig. 5 to demonstrate how the step response is

improved with iteration. In each iteration, the open-loop system model and the Kalman

filter gain are updated through the closed-loop identification from experimental data. The

experimental step response improves with each iteration_ similar to the simulated cases.

The experimental steady-state errors, however, do not go to zero in each case. This is due

to drift in the sensor zero between experiments. The system's dynamics have been found
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to be insensitiveto thesesmallchangesin theoperatingpoint. The resultsshowthat the

proposediterative LQG controller design is very effective for controlling this highly

unstablemagneticsuspensionsystem.

6 Conclusion

In contrast to most existing LQG controller designs of which the great majority solve

two separate, but dual problems: the LQR and Kalman filter design, this report proposes an

iterative LQG controller design approach. A closed-loop identification method is developed

to update the open-loop state-space model and the Kalman filter gain simultaneously from

the closed-loop input/output test data. The method is derived under the stochastic

framework, taking into account the effects of process noise as well as measurement noise.

For a noise free system, the exact open-loop model can be obtained after the first closed-

loop identification and the identified Kalman filter gain becomes the dead-beat observer

gain. For a noise corrupted system, iterations are required to update the open-loop model

and the Kalman filter gain from testing until the iterative LQG controller converges. In

each iteration, since the Kalman filter gain is identified directly from test data, the LQG

design is simplified to be an LQR design. A highly unstable large-angle magnetic

suspension system is used to validate this controller design. Both numerical simulations

and test data show that the controller converges quickly and is very effective when the

system is subjected to modeling error and unknown noise statistics.
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Appendix

The analytical model of the large-angle magnetic suspension test facility is

Jc= A,,x + Bmu (A1)

y = C,,,x (A2)

16



wherex= 2pX" , Am= A2, /_×A2_A,B,,=LB2.jand Cm=[C 1 05×5 ]. The state variable

xp includes pitch and yaw angles and three linear displacements of the cylinder's centroid.

The matrices A2_,

3.3415e+03

0

A2_ = -9.8070e + 00

-3.603 le - 15

-2.3357e - 16

A22 = 05x 5,

3.8370e +01

0

B 2 = 2.2144e-01

0

-2.7672e - 01

- 8.9024e + 01

0

C_= -1.1625e+02

0

0

A22, B 2 and G are

0

3.3415e+03

-2.4664e - 15

1.9618e-15

-3.603 le - 15

3.8370e + 01

8.9802e + 01

-1.5274e- 01

1.2154e-01

-8.5465e- 02

-3.9392e + 04

-4.9534e- 12

4.9937e + 01

4.3604e-15

-2.5089e- 02

4.9534e- 12

4.8609e -12

4.3604e- 15

9.5577e + 01

-9.0007e-15

2.0811e-12

-1.4472e- 11

-2.5089e- 02

-9.0007e- 15

-9.1324e- 01

3.8370e + 01

5.5514e+01

7.8453e- 02

-1.9674e- 01

2.2388e- 01

3.8370e + 01

-5.5514e + 01

7.8453e- 02

1.9674e- 01

2.2388e- 01

3.8370e + 01

-8.9802e + 01

-1.5274e- 01

-1.2154e-01

-8.5465e- 02

0 0 0 6.0976e + 03-

0 7.8740e + 03 0 0

0 0 0 6.2500e + 03

9.5425e + 01 0 -6.5359e + 03 0

-1.0725e + 02 0 -5.1813e + 03 0

The eigenvalues of the system matrix A,, are +58.78, +57.81, +9.78, +j7.97, and

+j0.96. The matrix C t which relates the sensor output voltage to the displacement can be

obtained from calibration and is assumed known. To recover the displacement from the

sensor output voltage, one can use x r = C_y.

The performance index for the state feedback design is chosen as

T

P.I.= Zy kQYk +uT Ruk (A3)
k=l

where Q=(C]')rdiag[1.e3 1.e3 2.e8 2.e8 2.e8]C_ -I and R=Is×._.
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Fig. 1 Large-Angle Magnetic Suspension Test Facility (LAMSTF) Configuration
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